Critical boundary constants and Pohozaev identity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Laplacian: Pohozaev Identity and Nonexistence Results

In this note we present the Pohozaev identity for the fractional Laplacian. As a consequence of this identity, we prove the nonexistence of nontrivial bounded solutions to semilinear problems with supercritical nonlinearities in starshaped domains. Résumé. Dans cette note, nous présentons l’identité de Pohozaev pour le Laplacien fractionnaire. Comme conséquence de cette identité, nous prouvons ...

متن کامل

Boundary Regularity, Pohozaev Identities, and Nonexistence Results

In this expository paper we discuss the boundary regularity of solutions to Lu = f(x, u) in Ω, u ≡ 0 in R\Ω, present the Pohozaev identities recently established in [17, 21], and give a sketch of their proofs. The operators L under consideration are integro-differential operator of order 2s, s ∈ (0, 1), the model case being the fractional Laplacian L = (−∆).

متن کامل

The Pohozaev Identity for the Fractional Laplacian

In this paper we prove the Pohozaev identity for the semilinear Dirichlet problem (−∆)u = f(u) in Ω, u ≡ 0 in R\Ω. Here, s ∈ (0, 1), (−∆) is the fractional Laplacian in R, and Ω is a bounded C domain. To establish the identity we use, among other things, that if u is a bounded solution then u/δ|Ω is C up to the boundary ∂Ω, where δ(x) = dist(x, ∂Ω). In the fractional Pohozaev identity, the func...

متن کامل

On generalized Simes critical constants.

We consider the problem treated by Simes of testing the overall null hypothesis formed by the intersection of a set of elementary null hypotheses based on ordered p-values of the associated test statistics. The Simes test uses critical constants that do not need tabulation. Cai and Sarkar gave a method to compute generalized Simes critical constants which improve upon the power of the Simes tes...

متن کامل

Symmetric Boundary Conditions in Boundary Critical Phenomena

It has been an extremely fruitful idea to study a conformal field theory by putting it on various surfaces, with or without boundaries. Apart from the sphere, that has been considered first, prime examples of non–trivial geometries include the torus [1] and the cylinder [2,3]. They serve to probe different facets of a given conformal theory. However the data specific of these surfaces are inext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques

سال: 2001

ISSN: 0240-2963

DOI: 10.5802/afst.995